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INTRODUCTION
Context
The concept of statistical significance is widely employed in 
medical research, especially in clinical and pharmacological 
studies and, at the same time, it is one of the most 
controversial, debated, and misunderstood topics since its 
original formulation1-3. In particular, it is often mistakenly 
believed that statistical testing can provide objective 
evidence about the real significance of phenomena (e.g. 
their existence or relevance). On the contrary, such a 
procedure is based on various hypotheses assumed to be 
true a priori and choices conditioned by an ineliminable 
margin of subjectivity1-8. Although the ambiguous concept 
of ‘significance’ was discussed by previous authors (e.g. 
William Sealy Gosset, otherwise known as Student), it was Sir 

Ronald Fisher who made it particularly famous in the 1920–
1930 decade9. After selecting an appropriate investigative 
methodology and assuming a priori that mere chance is the 
only phenomenon at play, a researcher can calculate the 
probability of obtaining an experimental result (the test 
statistic, e.g. the t of Student’s t-test) as or more extreme than 
that obtained in the experiment. This probability, referred 
to as the p-value, corresponds to the expected frequency 
of the statistical event within an infinite (very large) 
population of valid applications (i.e. where all background 
assumptions hold). In this regard, it is important to clarify 
some fundamental aspects. Firstly, Fisher’s approach involves 
establishing a series of hypotheses (the so-called statistical 
model) that are assumed to be perfectly met (true). These 
include underlying hypotheses (e.g. random sampling, 

AFFILIATION
1 R&C Research, Research and Disclosure, Bovezzo, Italy

CORRESPONDENCE TO
Alessandro Rovetta. R&C Research, Research and Disclosure, Via Brede Traversa II, 25073, Bovezzo, Italy. E-mail: rovetta.mresearch@gmail.com 
ORCID iD: https://orcid.org/0000-0002-4634-279X
KEYWORDS
compatibility, confidence interval, hypothesis testing, magnitude fallacy, nullism, surprisal

Received: 4 October 2023, Revised: 27 May 2024, Accepted: 31 May 2024
Public Health Toxicol. 2024;4(2):6
https://doi.org/10.18332/pht/189530

Published by European Publishing. © 2024 Rovetta A. This is an Open Access article distributed under the terms of the Creative Commons Attribution NonCommercial 
4.0 International License. (http://creativecommons.org/licenses/by-nc/4.0)

Compatibility ranges as a practical alternative to the 
significant and non-significant statistical dichotomy
Alessandro Rovetta1

Science can be defined as a social system built on the concept 
of critical agreement on evidentiary states. The latter must 
be achieved through rational thinking, communication, 
and the so-called ‘scientific method’, which involves a 
series of procedures aimed at ensuring the replicability of 
investigative experiments. In this regard, the dichotomization 
of statistical results into ‘significant’ and ‘non-significant’ 
has led to a long series of replication failures and fostered 
the misleading expectation that a mere numerical criterion 
can replace analytical reasoning. Especially in fields like 
toxicology and public health, such misuse can have serious 
consequences. Indeed, no study can prove that a result is 
(not) significant since uncertainty is always part of scientific 
research. At most, based on the above considerations and a 

comprehensive analysis of costs, risks, and benefits, it can be 
decided whether a certain phenomenon meets the threshold 
of scientific evidence required to undertake concrete actions. 
In light of this, the present manuscript proposes and 
discusses alternative concepts to statistical dichotomies, 
such as ranges of compatibility and effect size. Furthermore, 
it emphasizes the necessity to investigate the compatibility of 
the experimental data with all the relevant target hypotheses 
(not just the null one) and all the background assumptions. 
Finally, it proposes a compact framework for a complete 
presentation of results, including effect size. In this regard, 
the adoption of multiple confidence/compatibility intervals 
or surprisal intervals is recommended.
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normal distribution, linearity, etc.) and the null hypothesis of 
no effect or association. Moreover, as stressed by Greenland5, 
such background assumptions also involve human aspects 
(e.g. transparency, honesty, collaboration, competence, 
etc.). Once this is done, supposing a priori that no causal 
mechanism exists or we are exclusively in presence of a set 
of cofactors behaving randomly, it is a matter of assessing 
how ‘surprising’ (i.e. ‘statistically significant’) the obtained 
result compared to the null hypothesis prediction (previously 
set as true). Fisher (1920s) initially suggested a heuristic 
threshold of 5% to consider the outcome as unexpected 
(significant, p<0.05) or expected (non-significant, p≥0.05)10. 
This threshold was intended to work decently in most real 
applications. Subsequently, he regretted his own proposal, 
emphasizing that the p-value should be used as a graded 
measure of the strength of evidence against the null 
hypothesis2,11. 

Egon Pearson and Jerzy Neyman (1933), critics of the 
idea of statistically evaluating the true significance of a 
hypothesis (a valid point), proposed instead a novel decision-
theoretical approach (rule of behavior)12. The conventional 
goal, strictly conditional on the same underlying assumptions 
described above, is to establish two contrasting simple 
hypotheses: the null hypothesis of an exactly zero effect 
and the alternative hypothesis of non-exactly zero effect. 
If the experimental test statistic (e.g. Student’s t) is more 
extreme than a predetermined critical value (e.g. tc=1.96 in 
a very large sample), then the null hypothesis is arbitrarily 
rejected in favor of the alternative hypothesis; otherwise, 
the null hypothesis cannot be rejected (but neither accepted, 
although Neyman and Pearson originally used such a word). 
As specified by Neyman and Pearson themselves, the choice 
of this threshold is an open problem that, according to the 
latter Neyman, must be grounded in the evaluation of costs, 
risks, and benefits (as well as the selection of the hypothesis 
to be examined)13.

Applicability in scientific investigations
As explained by Fisher in 1955, the Neyman-Pearson 
approach (NP) can be useful in well-defined, limited 
contexts (e.g. inference regarding the proper functioning of 
a population of light bulbs produced by a factory), but it is 
generally not-recommendable in the scientific scenario14. 
In modern terms, Neyman-Pearson inference can be 
summarized as follows2,3: The critical region (e.g. z > z* = 
1.96) can be defined in terms of decision p-values (e.g. p< 
α=0.05). Assuming the process is iterated in numerous 
equivalent applications (i.e. all background hypotheses 
are met in each of these), it amounts to committing a total 
of α⋅100% type I errors or ‘false positives’ (sometimes 
written as α%, i.e. the percentage version of α) and, if 
power (1-β)⋅100% is also fixed, of β⋅100% type II errors 
or ‘false negatives’. In other words, the p-value is a mere 
decision-making index devoid of direct scientific meaning 
(i.e. if α=0.05, p=0.049 and p=0.001 are decisionally 

equivalent as they lead to the same decision). The so-called 
statistical confidence is based on the concept of coverage 
probability: only in numerous equivalent applications, 
(1-α)⋅100% (e.g. 95%) of the confidence intervals of the 
form (1-α)⋅100% (e.g. 95%) will contain the population 
parameter. Thus, the first essential aspect is that such a 
framework never informs decisions on individual studies 
(e.g. it is incorrect to think that a 95% confidence interval 
has a 95% probability of containing the true value) since 
it is mathematically structured to operate merely on high 
numerosity under ideal conditions2,3,7,11,12. In addition, as 
evidenced by the (re)current ‘replication crisis’, equivalent 
conditions cannot be guaranteed in practice due to sources 
of scientific uncertainty that are not only difficult to model 
(e.g. researchers’ attention, confounding factors, proper 
sampling, etc.) but are also often unknown1-7,15-17. This leads 
to decisions that are inconsistent with the predetermined 
goal (due to what are sometimes called ‘Type III errors’)16. 
According to the recommendations of some of the leading 
global authorities in the field – including the American 
Statistical Association – and recent initiatives like the 
International Committee Against the Misuse of Statistical 
Significance (ICAMSS), the p-value should therefore be 
employed in a neo-Fisherian manner1,2,18-24. Specifically, 
the p-value is a continuous measure of the compatibility 
of the statistical result with the target hypothesis (e.g. 
the point null hypothesis of an exactly zero effect), 
whose interpretability in this sense is conditional on the 
background assumptions. The notion of ‘compatibility’ – 
which has been traced back to Karl Pearson25 (father of 
Egon) in 1900 – to indicate the degree of agreement of the 
data with the target hypothesis as evaluated by the chosen 
test, is a much more moderate expression than ‘support’ 
and it is not conceived to make terminal decisions. Indeed, 
supporting a hypothesis means assigning greater plausibility 
to the latter compared to others; on the contrary, showing a 
certain degree of compatibility with a hypothesis does not 
exclude the presence of other hypotheses that are equally 
or even more consistent with the data (as evaluated by the 
chosen statistical model) or the scientific phenomenon. 
Concerning mere statistics, p-values close to 1 indicate 
high compatibility, while p-values close to 0 indicate 
low compatibility. Hence, confidence intervals become 
compatibility intervals: for instance, a 95% compatibility 
interval of the form (x, y) contains all hypotheses whose 
p-value is greater than 0.05, meaning they are more 
compatible with the data than hypotheses predicting 
effects ‘x’ and ‘y’ (as conditionally assessed by the statistical 
test)7,22,26,27.

Common errors in public health
As extensively documented in the literature, there is a 
growing need to raise awareness within the medical 
community about the correct use of the aforementioned 
frequentist-inferential methods1. In light of the costs and 
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risks linked to investigations in public health, it is essential 
to provide an overview of the most common errors and 
seek both short-term and long-term solutions. The first 
common flawed approach is the so-called null hypothesis 
significance testing (NHST), where only the point hypothesis 
of zero effect is considered and evaluated in dichotomous 
terms of ‘significance’ and ‘non-significance’24,28,29. Even in 
the utopian scenario where all background assumptions 
are perfectly met, a large p-value for the null hypothesis 
only indicates a high degree of compatibility of the latter 
with the data (as conditionally evaluated by the test) 
but does not in any way support such a hypothesis over 
others. An easy counterexample is as follows: Let (1–9) 
be an 80% compatibility interval associated with the best 
point estimate of a hazard ratio HR=3. The p-value for the 
mathematically null hypothesis HR*=1 is thus equal to 
p=0.20 (as HR=1 is the first limit of the 80% compatibility 
interval). Many would wrongly classify this outcome as 
‘(statistically) non-significant’ only because the p-value for 
the null hypothesis is greater than 0.05; however, under 
the conditions described above, the data have exactly the 
same statistical compatibility with the decidedly non-
null hypothesis HR*=9 (p=0.20, as HR=9 is the other limit 
of the 80% compatibility interval). But that is not all: the 
hypothesis most compatible with the data is not HR*=1 but 
HR*=3 (p=1, since HR=3 is the best point estimate). Thus, 
conditionally on the background assumptions, we can only 
conclude large statistical uncertainty and not the absence of 
any significance: indeed, this outcome is highly compatible 
with hypotheses of both low and broad effect7,8. The second 
issue, closely related to nullism (mere interest in the point 
null hypothesis), is the lack of distinction between large 
and small effect sizes. For instance, we could encounter 
situations where two (or more) hypotheses consistent with 
a low-magnitude phenomenon (e.g. HR*=1 and HR*=1.2) lead 
to quite different degrees of compatibility according to the 
adopted test (e.g. p=0.01 and p=0.05, respectively). If the best 
point estimate is consonant with a non-negligible effect (e.g. 
HR=2.4), such a scenario also signals high uncertainty7,8,20. 
The third issue is that, often, many authors mix Neyman and 
Pearson’s rule of behavior with Fisher’s significance testing, 
even though these approaches are based on mathematically 
and epistemologically incompatible formulations3. Therefore, 
this article discusses a possible approach to mitigate such 
misunderstandings.

METHODOLOGICAL APPROACH
Foundations
Human psychology – and thus all biases and inevitable 
sources of uncertainty that it carries with it – is an integral 
component of scientific investigations3,7,30,31. Since its earliest 
Bayesian formulations, modern statistics has been modeled 
on human perception, taking into account cognitive and 
even cultural aspects (e.g. Good 1952)32. In this regard, the 
reasons behind the vast success of NHST should be searched 

in university education and cognitive distortions aimed at 
oversimplifying complex concepts7,18,24,33. As a remedy, Rafi 
and Greenland26 propose to explain the ambiguous and 
unclear concept of ‘statistical significance’ through familiar 
statistical phenomena such as flipping an unbiased two-
headed coin. The so-called ‘surprisal’ (or ‘S-value’) thus 
represents, conditionally on the background assumptions, 
the number of consecutive heads one would need to obtain 
– by flipping an unbiased two-headed coin – to match the 
statistical surprise of the result calculated in the experiment 
(the test statistic). This approach, subsequently extended 
to statistical compatibility via surprisal intervals7,8, resolves 
some thorny issues not only regarding the interpretation of 
p-values but also their mathematical-statistical utilization. 
Indeed, the p-value has been widely adopted by the neo-
Fisherian statisticians as a graded/continuous measure of the 
refutational evidence against one or more hypotheses11,14,34. As 
recently demonstrated by Greenland3,5, such an interpretation 
is legitimate within this framework. However, this ‘divergence’ 
p-value (even if intended as a mere descriptive indicator of 
the discrepancy between observed data and the predictions 
of the statistical model) possesses counterintuitive properties. 
For instance, the difference in information content between 
p1=0.05 and p2=0.10 is larger than that between p3=0.95 
and p4=1, despite 1 - 0.95 = 0.10 - 0.05 = 0.057. This occurs 
because the ratio p2/p1 is 2, while the ratio p4/p3 is less 
than 1.1 (i.e. the probabilities are quite different in the first 
pair and very similar in the second). If we compare p to the 
probability of obtaining S consecutive heads, by flipping an 
unbiased coin (a phenomenon of which we have immediate 
perception), we get that S= -log2p (from p=0.5S). Thus, the 
S-values in the four preceding cases are, respectively: S1=4.3, 
S2=3.3, S3=0.07, and S4=0. In other words, the first statistical 
result is as surprising as about 4 consecutive heads, the 
second is as surprising as about 3 consecutive heads, and the 
third and fourth are markedly less surprising than getting 
head when flipping an unbiased coin (compared to the 
model prediction). By doing so, the difference in information 
becomes evident (S2 - S1 = 1 while S4 - S3 = 0.07). Nevertheless, 
the current scenario is consistent with a widespread rejection 
of methodologies that are too innovative or complex. 
Accordingly, this study proposes and discusses a graded 
scale of statistical compatibility whose ranges are based on 
the information (surprisal) contained within.

Graded compatibility
Consistently with Fisherian indications, Muff et al.35 recently 
proposed a graded scale to read p-values as measures of 
evidence against a hypothesis. Although such an attempt 
has been subject to criticism, Amrhein and Greenland21 
argue that the proposal of Muff et al.35 does ‘more good than 
harm’ since it contrasts the dichotomous, overconfident 
interpretation of statistical significance. Nevertheless, the 
term ‘evidence’ – that could be defined, according to the 
Oxford English Dictionary, as ‘facts or observations adduced 
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in support of a conclusion or statement’ – transcends the 
actual epistemological capabilities of the p-value when 
drawing practical conclusions. Indeed, since a statistical 
hypothesis (SH) is just our attempt to represent an empirical 
hypothesis (EH) on a mathematical level, p-values could 
measure evidence against ‘SH’ but not ‘EH’: it all depends on 
our ability to select a proper SH based on EH. In this regard, 
we should also acknowledge that a real phenomenon might 
be too complex to be well-represented by simple statistical 
hypotheses. For these reasons, a framework to elaborate 
a graduated scale of mere compatibility is proposed here 
(Table 1). This should be constructed based on two main 
aspects: 1) the information contained within the range 
(surprisal), and 2) the predetermined scientific objective. 
Specifically, the first point aims to realize the gradation of the 
scale according to the degree of surprise (incompatibility) of 
the results compared with the fixed hypothesis (which does 
not necessarily have to be the null hypothesis of no effect) 
as conditionally assessed by the chosen test. The second 
point emphasizes that there is no absolute or unique way to 
evaluate a statistical result and that, as stated by Neyman13 
in 1977, even the choice of the statistical hypothesis to 
investigate must be calibrated to the scientific objective.

The goal is to establish various thresholds – thus 
counteracting the dichotomous view – and, at the same 
time, to prevent the adoption of incorrect and misleading 
expressions such as ‘(non) significant’. Some heuristics 
for setting the various thresholds could be as follows: E1) 
Each subsequent threshold is half of the previous one (so 
that the S-value increases by 1 bit of information for each 
jump). For example, α1=0.250, α2=0.125, α3=0.063, α4=0.032, 
and α5=0.016; and E2) The thresholds are consistent with 
common ones (e.g. α1=0.20, α2=0.10, α3=0.05, α4=0.01, and 
α5=0.001).

However, it must be clear that, being a purely descriptive 
approach, the specification of these ranges aims only to 
simplify communication and limit overstatements. Moreover, 
the publication of a specific pre-study protocol lends much 
more weight – even in the eyes of editors and reviewers 

– to the issue of threshold selection and the evaluation of 
statistical compatibility in relation to the research scope.

Compatibility distributions and intervals
The selection of a specific target hypothesis concerning 
a single-point effect is generally insufficient to properly 
inform a scientific conclusion, since it does not allow us to 
evaluate the consistency of the experimental scenario with 
all relevant hypotheses. Recent literature proposes various 
ways to address this issue, like representing the so-called 
‘p-distributions’ or ‘S-distributions’ (i.e. ‘compatibility 
distributions’ and ‘surprisal distributions’, respectively) 
to observe the (in)compatibility of the data with the set 
of all possible target hypotheses20,26. In this regard, some 
authors propose adding pre-study protocols to divide 
such hypotheses into different groups based on the effect 
size36. A practical example of application is provided in 
the Supplementary file. Nonetheless, these modalities of 
presentation are confined within manuscripts – as they are 
hardly communicable in introductory or summary sections 
such as abstracts – and are difficult to implement when 
dealing with several outcomes within the same study. To 
solve this problem, a novel convention for reporting multiple 
compatibility and surprisal intervals can be adopted7,8. 
According to the E2 protocol (Table 1), we could choose 
three compatibility intervals associated with the thresholds 
α1=0.20 (80% CI), α3=0.05 (95% CI), and α =0.01 (99% CI) 
as follows: 80|95|99% CI = (a–b|c–d|e–f). For instance, 
considering a calculated best point estimate of 10, if 80% CI 
= (6–14), 95% CI = (3–17), 99% CI = (0–20), we can write 
80|95|99% CI = (6–14|3–17|0–20). This tells us that all 
hypotheses that predict an effect between 6 and 14 are, at 
least, highly compatible with the data (p>0.20, i.e. S<2.3). At 
the same time, all hypotheses between 3 and 17 are, at least, 
marginally compatible with the data (p>0.05, i.e. S<4.3). 
Finally, all hypotheses between 0 and 20 are, at least, weakly 
compatible with the data (p>0.01, i.e. S<6.6) or, equivalently, 
all hypotheses outside (i.e. those <0 or >20) are minimally 
compatible with the data (p<0.01, i.e. S>6.6).

DISCUSSION
We need descriptive approaches to reach causal 
inference
There are various non-descriptive methods for attempting 
to solve the problem of testing single-point hypotheses. 
Among these, the so-called ‘equivalence testing’ involves 
setting a target hypothesis in the form of a range and then 
adopting a dichotomous decisional rule of behavior. For 
example, when dealing with adverse events related to LDL 
cholesterol levels, a certain research group could define 
an effect as practically null when the average change falls 
between -5 and 5 mg/dL (range null hypothesis). However, 
as shown by Greenland3, this procedure does not escape the 
criticalities that permeate the standard Neyman-Pearson 
approach; rather, it introduces additional ones. Firstly, the 

Table 1. Compatibility ranges protocol. All the 
multiple thresholds should be established and 
published (with a digital object identifier, or DOI) 
before conducting the experiment

The ranges of 
p-values

Compatibility 
range

Surprisal range

α1 ≤ p ≤ 1 Marked Minimal 
α2 ≤ p < α1 High Weak 
α3 ≤ p < α2 Moderate Marginal 
α4 ≤ p < α3 Marginal Moderate 
α5 ≤ p < α4 Weak High 
0 < p < α5 Minimal Marked 
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dichotomous decision ‘rejection versus non-rejection’, to be 
made in individual studies, becomes extremely conditional 
on the choice of the initial null range (to be maintained in all 
studies). On this point, it is particularly complex to establish 
the width of this interval based on the scientific context 
and the associated costs, risks, and benefits – which could 
become clearer only over the course of various experiments – 
while taking into account biases and financial interests3,5,28,30. 
Secondly, the dichotomization of hypotheses creates regions 
of statistical equivalence that do not correspond to regions 
of scientific equivalence: for instance, an increase of 6 
mg/dL is not scientifically equivalent to an increase of 30 
mg/dL despite both point hypotheses belonging to the 
statistical alternative hypothesis (which assumes the form 
h < -5 or h > 5) within the same side (h > 5). Third, in many 
epidemiological situations such as the COVID-19 crisis, the 
whole scientific landscape is constantly changing (e.g. the 
occurrence of viral mutations can substantially alter the 
duration and symptoms of the disease), thus invalidating 
the equivalence request (e.g. the risk-benefit ratio can 
change drastically). This further underscores the necessity 
of engaging in critical thinking rather than relying on mere 
numerical criteria. Additionally, the generally overlooked 
aspect is that scientific inference requires consistency not 
only among statistical studies (which should always include 
randomized experiments to provide causal evidence) but also 
among extra-statistical evidence (analysis of biochemical 
mechanisms, clinical and medical observations, etc.). When 
this multidisciplinary set of reasoned, epistemic evidence 
converges in the same direction, causal inference can be 
claimed1,2,7,8,15,17,23,30. However, since we are forced to make 
dichotomous final decisions, such as approving or rejecting 
drugs, it is important to establish guidelines that serve 
as a good compromise while realizing inference. In valid 
repetitions, one should expect a therapeutic effect within 
an optimal pre-defined range in most cases, although the 
size of this effect must be assessed continuously or, at least, 
through a graduated scale; multiple ranges of effect (e.g. 
small, medium, large, etc.) could be defined in order to avoid 
dichotomization (Supplementary file). The expression ‘valid 
repetitions’ emphasizes the need to approach equivalence 
conditions as much as possible (indeed, minimizing sources 
of uncertainty remains fundamental) without the implausible 
expectation to perfectly achieve them. Concerning 
pharmacological development, there may be circumstances 
where the dose to administer must be lower, the treatment 
must be implemented for a shorter duration, or the initial 
clinical conditions are simply different. In such situations, 
it is appropriate to recalibrate the descriptive protocol 
or, if possible, establish a pre-study protocol of protocols 
that encompass various optimal, graded ranges based on 
different scenarios. The ultimate goal is to properly inform 
the so-called ‘non-terminal decisions’ (e.g. these findings 
are consistent with the treatment effectiveness, which 
justifies further research), which still require a broader 

clinical assessment (e.g. the absence of severe side effects, 
sustainable invasiveness, etc.).

CONCLUSIONS
This article discusses the epistemological, scientific, and 
statistical reasons supporting the descriptive approach 
over theoretical-decisional frameworks in public health. 
In particular, the strong dependence of the latter on 
assumptions that are too often violated, such as the absence 
of sources of uncertainty – including variability and bias – 
makes the latter not recommended in the medical field (e.g. 
replication crisis). In this regard, the proposed protocol 
for graded assessment of statistical compatibility aims 
to mitigate overstatement and bias as well as to avoid the 
dichotomization of scientific results into ‘significant’ and 
‘non-significant’ based on a mere numerical criterion. The 
adoption of multiple compatibility or surprisal intervals 
can serve as a compromise between completeness and 
conciseness. It is recommended to adopt this or similar 
descriptive methods for scientific investigations in the soft 
sciences.
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